Bounds for singular fractional integrals and related Fourier integral operators, preprint

نویسندگان

  • Andreas Seeger
  • Stephen Wainger
  • ANDREAS SEEGER
  • STEPHEN WAINGER
چکیده

Let Ω ⊂ Ω̃ be open sets in R, I ⊂ R be an open neighborhood of the origin and let η be a compactly supported smooth function on Ω× I; we assume that η(·, 0) does not vanish identically. For each x ∈ Ω let t 7→ Γ(x, t) ⊂ Ω̃ be a regular parametrization of a submanifold Mx ⊂ Ω̃ with codimension l. We assume that Γ(x, t) ⊂ Ω if (x, t) ∈ supp η, and that Γ satisfies Γ(x, 0) = x and depends smoothly on (x, t). We shall consider the singular fractional integral operator (or weakly singular Radon transform) Rσ, defined by

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Fourier Extension Operator on Large Spheres and Related Oscillatory Integrals

We obtain new estimates for a class of oscillatory integral operators with folding canonical relations satisfying a curvature condition. The main lower bounds showing sharpness are proved using Kakeya set constructions. As a special case of the upper bounds we deduce optimal L(S) → L(RS) estimates for the Fourier extension operator on large spheres in R, which are uniform in the radius R. Two a...

متن کامل

On Multilinear Oscillatory Integrals, Nonsingular and Singular

Basic questions concerning nonsingular multilinear operators with oscillatory factors are posed and partially answered. L norm inequalities are established for multilinear integral operators of Calderón-Zygmund type which incorporate oscillatory factors e iP , where P is a real-valued polynomial. A related problem concerning upper bounds for measures of sublevel sets is solved.

متن کامل

Lp BOUNDS FOR SINGULAR INTEGRALS AND MAXIMAL SINGULAR

Convolution type Calderr on-Zygmund singular integral operators with rough kernels p.v. (x)=jxj n are studied. A condition on implying that the corresponding singular integrals and maximal singular integrals map L p ! L p for 1 < p < 1 is obtained. This condition is shown to be diierent from the condition 2 H 1 (S n?1).

متن کامل

Wavelet Transform of Fractional Integrals for Integrable Boehmians

The present paper deals with the wavelet transform of fractional integral operator (the RiemannLiouville operators) on Boehmian spaces. By virtue of the existing relation between the wavelet transform and the Fourier transform, we obtained integrable Boehmians defined on the Boehmian space for the wavelet transform of fractional integrals.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000